Measurement of jet properties and their modification in heavy-ion collisions

Jan Rak
PHENIX collaboration

Department of Physics and Astronomy

IOWA STATE UNIVERSITY

20th Nuclear Dynamics Workshop Jamaica, March 14-20, 2004

Can the QGP be found using two-particles azimuthal correlations?

NO!

It was already discovered using an ElectroMagnetic Calorimeter!

Partonic degree of freedom in HI at RHIC

Highlights from RHIC AuAu program:

- high-p_T particle yield suppression jet quenching
- disappearance of the back-to-back jet in central collisions
- exceedingly large azimuthal anisotropy v₂

Finally we observed something, however...

Detailed analysis of parton/jet properties like:

- shape of the fragmentation D(z) and parton distribution function $f_q(p_{Tq})$
- parton transverse momentum $\langle k_T^2 \rangle$

and their modification is vital for understanding of the mechanism of parton interaction with QCD medium formed at RHIC

Hard scattering

Hard scattering in <u>transverse</u> plane

Point-like partons \Rightarrow elastic scattering

$$\vec{p}_{T, jet1} + \vec{p}_{T, jet2} = \vec{0}$$

Partons have intrinsic transverse momentum
$$\mathbf{k_T}$$
 $\vec{p}_{T,jet1} + \vec{p}_{T,jet2} = \vec{k}_{T,1} + \vec{k}_{T,2}$

Jet Fragmentation (width of the jet cone)

Partons have to materialize (fragment) in colorless world

$$\vec{j}_T = \text{jet fragmentation}$$
 transverse momentum

 j_T and k_T are 2D vectors. We measure the mean value of its projection into the transverse plane $\langle |j_{Tv}| \rangle$ and $\langle |k_{Tv}| \rangle$.

$$\langle | \mathbf{k}_{\mathrm{Ty}} | \rangle = \sqrt{\frac{2}{\pi}} \sqrt{\langle \mathbf{k}^{2}_{\mathrm{T}} \rangle}$$

- $\langle |j_{Ty}| \rangle$ is an important jet parameter. It's constant value independent on fragment's p_T is characteristic of jet fragmentation (j_T -scaling).
- $\langle |\mathbf{k}_{Ty}| \rangle$ (intrinsic + NLO radiative corrections) carries the information on the parton interaction with QCD medium.

Fragmentation Function (distribution of parton momentum among fragments)

In Principle

$$g_i$$
 jet

$$\vec{p}_{parton} = \sum_{i} \vec{p}_{i}$$

$$\vec{p}_{parton} = \sum_{i} \vec{p}_{i}$$
 $|\vec{p}_{parton}| = \sum_{i} |\vec{p}_{i}| \cos(\theta_{i})$

$$z_{i} = \frac{|\vec{p}_{i}| \cos(\theta_{i})}{|\vec{p}_{parton}|} \qquad \sum_{i} z_{i} = 1 \qquad \text{Fragmentation function} \quad D(z) \propto e^{-z/\langle z \rangle}$$

$$\sum_{i} z_{i} = 1$$

In Practice parton momenta are not known

$$x_E = -\frac{\vec{p}_T \cdot \vec{p}_{Ttrigg}}{|\vec{p}_{Ttrigg}|^2}$$

$$x_E z_{trigg} = \frac{p_T \cos(\Delta \varphi)}{p_{parton}} = z \implies \text{Simple relation}$$

$$\langle z \rangle = \langle x_E \rangle \langle z_{trigg} \rangle$$

jet 2

x_E in pp collisions

PHENIX preliminary

CCOR (ISR) $\sqrt{s} = 63 \text{ GeV}$

see A.L.S. Angelis, Nucl Phys B209 (1982)

⟨z⟩ extracted from pp data

We measured x_E and

$$\langle z \rangle = \langle x_E \rangle \langle z_{trigg} \rangle$$

Only one unknown variable $\langle z \rangle \Rightarrow$ iterative so that one parton distrib.

Slope of the fragmentation function in p+p collisions at \sqrt{s} =200 GeV

$$\frac{1}{\langle z \rangle} = 6.16 \pm 0.32$$

HERMES fragmentation fcn

A. Airapetian, et. al., Eur. Phys. J. C 21, 599–606 (2001)

DIS of 27.5 GeV positrons on hydrogen.

z^a(1-z)^b parametrization

$$\frac{1}{\langle z \rangle} = 5.73 \pm 0.37$$

Method – azimuthal correlation function

Now we know the $\langle z \rangle$ - let us measure σ_N and σ_N . Two particle azimuthal correlation function \longrightarrow $C_{ij}(\Delta \phi) = norm \cdot \frac{dN^{real}_{ij}}{d\Delta \phi_{ii}}$

$$C_{ij}(\Delta\phi) = norm \cdot \frac{dN^{real}_{ij}}{d\Delta\phi_{ij}} / \frac{dN^{mixed}_{ij}}{d\Delta\phi_{ij}}$$

Unavoidable source of two particle correlations in HI – elliptic flow

"flow" pairs:

$$[1+2v_2^2\cos(2\Delta\varphi)]$$

Intra-jet pairs angular width:

$$\sigma_{N} \rightarrow \langle |j_{T_{V}}| \rangle$$

Inter-jet pairs angular width:

$$\sigma_{A} \to \langle |j_{Ty}| \rangle \oplus \langle |k_{Ty}| \rangle$$

pp and dAu correlation functions

$\sigma_{N}, \sigma_{A}, \langle |j_{Tv}| \rangle, \langle |k_{Tv}| \rangle$ relations

Knowing σ_N and σ_A it is straightforward to extract $\langle |j_{Tv}| \rangle$ and $\langle z_{trigg} \rangle \langle |k_{Tv}| \rangle$ In the high-p_T limit $(p_T >> \langle |j_{Tv}| \rangle \text{ and } p_T >> \langle |k_{Tv}| \rangle)$

$$\left\langle \left| j_{\perp y} \right| \right\rangle = \sqrt{\frac{2}{\pi}} \frac{\left\langle p_{Ttrig} \right\rangle \left\langle p_{Tassoc} \right\rangle}{\sqrt{\left\langle p_{Ttrig} \right\rangle^2 + \left\langle p_{Tassoc} \right\rangle^2}} \sigma_N \qquad \left\langle \left| k_{Ty} \right| \right\rangle \approx \left\langle p_T \right\rangle \sqrt{\sigma_A^2 - \sigma_N^2}$$

$$\langle |k_{Ty}| \rangle \approx \langle p_T \rangle \sqrt{\sigma_A^2 - \sigma_N^2}$$

However, inspired by <u>Feynman</u>, <u>Field</u>, <u>Fox</u> and <u>Tannenbaum</u> (see Phys. Lett. 97B (1980) 163) we derived more accurate equation

$$\langle z_{trigg} \rangle \langle |k_{Ty}| \rangle = \frac{\langle p_T \rangle}{\sqrt{2} x_h} \sqrt{\sin^2 \sqrt{\frac{2}{\pi}} \sigma_A - (1 + x^2_h) \langle |j_{Ty}| \rangle^2}$$

$$X_h = p_{T,assoc} / p_{T,trigg}$$

σ_{N} , $\sigma_{A} \rightarrow \langle |j_{Ty}| \rangle$, $\langle |k_{Ty}| \rangle$ in pp data

3/25/2004

From pp to dAu

$$\langle k_{\perp}^{2} \rangle_{\text{dAu}} = \langle k_{\perp}^{2} \rangle_{\text{vac}} + \langle k_{\perp}^{2} \rangle_{\text{IS nucl}}$$

 $\langle |\mathbf{k}_{Ty}| \rangle$ carries the information on the parton interaction with cold nuclear matter. $\langle |\mathbf{j}_{Ty}| \rangle$ should be the same as in pp – systematic cross check

3/25/2004

$\langle |\mathbf{k}_{\mathrm{Ty}}| \rangle$ from pp and dAu

$$\langle \Delta {f k}_T^2 \rangle_{IS} = \mu^2/\lambda_{eff} \langle L \rangle_{IS}$$
 I.Vitev nucl-th/0306039

No significant k_T-broadening seen in dAu data

 $\langle z \rangle = 0.75$ value taken from pp data

Mike T. *et. al.* Phys. Lett. B97, 163 (1980) $\sqrt{s} = 63 \text{ GeV}$

Comparison to outside world

PHENIX preliminary

A.L.S. Angelis et al ,
Phys. Lett. B97, 163 (1980)

L. Apanasevich et al.,

Phys. Rev. D59, (1999)

AuAu $\langle |j_{Ty}| \rangle$ and $\langle z \rangle \langle |k_{Ty}| \rangle$ from CF

$$\langle k_{\perp}^{2} \rangle_{\text{AA}} = \langle k_{\perp}^{2} \rangle_{\text{vac}} + \langle k_{\perp}^{2} \rangle_{\text{IS nucl}} + \langle k_{\perp}^{2} \rangle_{\text{FS nucl}}$$

AuAu $\langle |j_{Tv}| \rangle$ and $\langle z \rangle \langle |k_{Tv}| \rangle$ from CF

There seems to be significant broadening of the away-side correlation peak which persists also at somewhat higher p_T range.

AuAu yield

AuAu associated yields

 $(2.5 < p_{Ttrigg} < 4.0) \otimes (1.0 < p_{Tassoc} < 2.5) \text{ GeV/c}$

Note p_T is rather low; associated particle yields increase with centrality

Azimuthal distributions in Au+Au

Near-side: peripheral and central Au+Au similar to p+p

Strong suppression of back-to-back correlations in central Au+Au

STAR jets and away-side quenching

Or, the jets do make it through, but they scatter a lot and shake off couple of gluons below LPM threshold?

Induced gluon radiation – LPM effect

Formation time: elmag bremsstrahlung - field regeneration - well understood in QED.

Electron deep scattering – two cone of radiation:

- 1) surrounded field shaken off direction of an initial e-momentum
- 2) regeneration of the new field "coat" final e- momentum

Formation time - gluon energy cut-off

Hadronization may happen only after full field regeneration.

$$t_{form} = \gamma t = E/m_{constituent} R_{had}$$
 at confinement scale $m_{constituent} = \sqrt{\langle k^2_T \rangle} \approx 1/R_{had}$

$$t_{form} \approx E.R_{had}^2 = E/\langle k_T^2 \rangle$$

In order to radiate gluon, formation time $\tau^g_{form} \approx \omega/p^2_{T\omega}$ has to be shorter than L.

Nonperturbative estimate for the parton's transverse momentum due to the interaction with QCD medium

$$p_{T\omega}^2 = \mu^2 L/\lambda$$

 μ = transverse momentum kick per collision λ =mean free path

 $\omega = \mu^2 L^2/\lambda$ energy loss of fast parton $\Delta E \propto \mu^2 L^2/\lambda$

p_T distributions on near and away side from STAR

Near side:

Overall enhancement from pp to AA

Fuqiang Wang QM04

Away side:

energy from initial parton seems to be converted to lower p_T particles

reminiscent of energy loss predictions

Apparent modification of the fragmentation function?

Summary and conclusions

Systematic of jet production and fragmentation in pp, dAu and AuAu collisions:

- the slope of the fragmentation function in pp.
- σ_N , σ_A , $\langle |j_{Tv}| \rangle$ and $\langle |k_{Tv}| \rangle$ in pp, dAu, AuAu.

We found:

- Good agreement of the jet properties in pp collisions with other experiments.
- dAu $\langle j_T \rangle$ and $\langle k_T \rangle$ consistent with pp.
- In AuAu significant k_T broadening with centrality.
- Yield of away side associated particles is suppressed at p_T >2GeV/c and shows rising trend with N_{part} below 2GeV/c. Remnant of high- p_T jets hint for jet-rescattering rather than disappearance?

Next step:

- map out this trend to explore "jet-quenching balance function".
- Explore the AuAu fragmentation function.

Backup slides

pQCD collinear factorization

Production yield in hard-scattering regime factorizes

 $D_{h/c}(z_c, Q^2_c) \approx \text{production probability of hadron h (momentum fraction } z_c = p_{Th}/p_{Tc})$ from parton c

In AA some algebra of v2+jets needed

In AuAu collisions the situation is more complicated by presence of "global" correlations induced by nuclear geometry - called elliptic flow.

$$C(\Delta \varphi) = \frac{d^2 N}{d\Delta \varphi} = \int_{-\pi}^{\pi} \frac{dN}{d\varphi} \frac{dN}{d(\varphi + \Delta \varphi)} d\varphi \qquad \frac{dN^{\text{FLOW}}}{d\varphi} \propto (1 + 2v_2 \cos(2(\varphi - \Psi))) \oplus \frac{dN^{\text{JET}}}{d\varphi} \propto Gauss(\varphi, \sigma)$$

$$C(\Delta \varphi) \propto (1 + 2v^2 \cos(2\Delta \varphi)) + Gauss(\Delta \varphi, \sqrt{2}\sigma) + Crossterm(\varphi_{\text{jet}} - \Psi)$$

Flat if no correlation between Ψ_{plane} and jet thrust

